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Video Vectorization via Tetrahedral Remeshing
Chuan Wang†§, Jie Zhu‡, Yanwen Guo‡, Wenping Wang†, Fellow, IEEE

Abstract—We present a video vectorization method that gen-
erates a video in vector representation from an input video
in raster representation. A vector-based video representation
offers the benefits of vector graphics, such as compactness and
scalability. The vector video we generate is represented by a
simplified tetrahedral control mesh over the spatial-temporal
video volume, with color attributes defined at the mesh vertices.
We present novel techniques for simplification and subdivision
of a tetrahedral mesh to achieve high simplification ratio while
preserving features and ensuring color fidelity. From an input
raster video, our method is capable of generating a compact video
in vector representation that allows a faithful reconstruction with
low reconstruction errors.

Index Terms—video, vectorization, representation

I. INTRODUCTION

Image vectorization is becoming increasingly important as
vector-based graphical contents are being gradually used in
computers, by cellphones and on the Internet. The problem be-
comes particularly needed as devices with different resolutions
and DPIs from cellphones, tablet PCs to HDTVs dominate
the market. One may have the experience that when switching
from a low DPI display to a higher one, the physical size of
a raster image will become smaller, causing users’ eyes feel
unconformable. In this case, if we simply magnify the original
image using interpolation, there will introduce obvious zig-
zag artifacts along the feature boundaries. The essential reason
behind is that raster images are of a discrete representation,
which has a fixed resolution. In contrast, vector graphics
use a continuous representation which provides an intrinsic
advantage, pixel resolution independent, which enables images
displayed with significantly varying resolutions without zig-
zag artifacts. Moreover, resolution independence also enables
the storage of a vector graphics constant to the varying
resolutions of displays, making it a compact representation,
especially when the display’s resolution is huge. Driven by this
demand, there has recently been a resurgence of interest in the
research of image vectorization techniques [1–5] which aim to
convert a raster image into a vector graphics. Similarly, with
videos becoming a more important media form, converting
legacy raster videos into vectorized representation is also
becoming an imperative issue, which can also bring the two
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advantages of vector graphics. However, to the best of our
knowledge, there is little work in the literature on video
vectorization.

Generating a vectorized video from a raster video is a
challenging task. Simply applying existing image vectorization
techniques to individual frames would not work because the
lack of consideration of temporal coherence between video
frames would lead to unacceptable flickering. It is thus natural
to treat the input video as a spatial-temporal volume and
consider what is the most suitable geometric representation for
the purpose of video vectorization. Inspired by existing image
vectorization techniques which are mostly based on a 2D mesh
representation, as the gradient quadrilateral mesh [1, 2] and
triangular patches with curved or straight boundaries [4, 5], we
propose to use 3D tetrahedral meshes for video vectorization.
Note that, however, this extension from 2D meshes to 3D
meshes for video vectorization is far from straightforward
and a number of technical challenges need to be addressed
to develop an effective video vectorization method.

Our approach

We present an effective method for generating a resolution-
independent vector-based video from an input raster video.
Our vector representation is based on a sparse tetrahedral mesh
with colors defined at its vertices. The core of our method
consists of new techniques for simplification and subdivision
of tetrahedral meshes defined over the spatial-temporal volume
of the input video.

A basic requirement for vectorized video representation
is feature preservation. To meet the requirement, we first
over-segment the input video into a set of temporal super-
pixels (TSPs) whose boundaries conform with important visual
feature and region boundaries, thereby preserving the features.
An initial regular tetrahedral mesh is built over the piecewise
defined, possibly discontinuous color field defined on the
TSPs. Then we simplify the initial mesh to obtain a feature-
preserving sparse tetrahedral mesh while preserving features,
which constitutes the vector representation of the video. Our
mesh simplification algorithm uses iterative edge contractions
based on an extended quadric error metrics (QEM) as ap-
proximation error. Finally, for video displaying we propose a
tetrahedral mesh subdivision method for reconstructing details
from the sparse control mesh to produce a raster video. Fig. 9
shows an example of a vectorized video by our method.
We validate the effectiveness of our approach with extensive
experiments.

In summary, we present an effective video vectorization
algorithm based on simplification and subdivision of tetrahe-
dral meshes. This is the first vectorization method for generic
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Fig. 1. Pipeline of our video vectorization (left of dashed line) and reconstruction (right of dashed line) framework.

videos. Our method achieves very high simplification ratio
(typically 1%) and well preserves visual features and color
fidelity.

II. RELATED WORK

A. Image vectorization

There has been much work on vectorization of non-
photographic images, such as fonts, cartoon [6] and line draw-
ings [7, 8]. Recently, vectorization of photographic images has
aroused a lot of interest [1–5, 9, 10]. Some methods produce
explicitly a parametric surface mesh associated with color as
the vector-based image representation. The geometric prim-
itives include the gradient mesh consisting of topologically
planar Ferguson patches with mesh-lines [1, 2], triangular
patches with curved boundaries [4], and the traditional tri-
angular meshes with straight edges [5]. Other methods adopt
a mesh-free representation. For instance, diffusion curves [3]
creates curves with color and blur attributes, and models the
color variation as a diffusion from these curves by solving a
Poisson equation. [11] automatically generates sparse diffusion
curve vectorizations of raster images by fitting curves in the
Laplacian domain.

We note that it is infeasible to simply extend the above im-
age vectorization techniques to each video frame independent-
ly because spatial coherence of the video cannot be guaranteed
in this way. In contrast, our method aims to produce a three-
dimensional, vector-based video representation by working
directly on the spatial-temporal video volume.

B. Cartoon vectorization

Some methods work on cartoon vectorization [12, 13].
Zhang et al. [14] proposed a layered representation of cartoon
animations in which the pre-segmented regions and decorative
lines are vectorized separately. Our approach differs from this
method in several aspects. First, our approach is suitable for
generic video vectorization and can be applied to cartoon
animation as well, while this method is only applicable to
vectorization of cartoon animations by taking advantage of
the particular nature of cartoons, such as easy image de-
composition into background and foreground, and distinctive
decorative lines, which are not possessed by generic videos.
Therefore, this method is not general enough to be applicable
to full-color videos. Second, our method yields a unified
vector-based video representation, while the output of this

method is the vectorization of segmented regions, decorative
lines, together with their motions across frames. Third, our
method works automatically, while user-assistance is required
in [14] to complete the static background by this method.

C. Vectorization for other applications
It is noted that vector representation has also been used to

model solid textures [15] and volumetric objects [16], and to
achieve resolution independent texture mapping [17].

III. OVERVIEW

Our video vectorization framework takes a raster video as
input and produces a tetrahedral mesh as the final vector rep-
resentation. Specifically, the pipeline consists of the following
steps: for an input raster video, we first segment the video into
multiple temporal superpixels. Then we create an initial dense
tetrahedral mesh by regular mesh generation and cleaving.
Further, simplification and color optimization are performed
to generate the final simplified tetrahedral control mesh, that is
our proposed vector-based representation of the video. Finally,
subdivision and rasterization are used to reconstruct raster
video for display. (See Fig. 1).

A. Feature detection via video segmentation
The essence of video vectorization is to find functions to

fit the color of the raster video. The edge features, or the
boundaries of color instant change in the input video should
be represented by discontinuous functions to avoid blur at
the boundaries. For single image vectorization, Canny edge
detector [18] is often used for this purpose. However, to our
best knowledge the similar idea of detecting "3D edges" cannot
be easily generalized to video sequences. Consequently, to
extract the boundary features in 3D video volume, we perform
video segmentation to partition a video clip into temporal
superpixels (TSPs). One TSP is a set of pixels across multiple
frames with similar colors, and in this paper we apply [19]
because it can generate higher quality segmentations compared
with other existing methods like [20–22], which are temporally
coherent with stable region boundaries. Meanwhile, each TSP
generated by [19] has smooth internal color changes, which
makes it easy to be fitted by a low-order continuous function
as the tetrahedral mesh represents. Otherwise, the color will
be difficult to fit, incurring obvious artifacts when the video
is zoomed in. Also, after this step each pixel is tagged with
the ID of the TSP containing it.
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B. Regular tetrahedral mesh generation and cleaving

We generate an initial tetrahedral mesh
from the original video with each pixel
as a vertex in the mesh. Specifically, we
view the video as a 3D volume and create
a regular 3D lattice with all the vertices
located at video pixels. Then for each
neighboring 2 × 2 × 2 vertices forming a
cell, we split it into six lattice tetrahedra
with equal volume as the right figure shows. Compared with
more advanced meshing algorithms like 3D Delaunay Trian-
gulation [23], this method has two advantages. First, based on
the pixel locations of a video, creating such a regular 3D lattice
is intuitive and straightforward; Second, since each vertex
denotes a pixel in the video, such a dense mesh actually keeps
all the color information. The mesh is thus a perfect, geometric
fit for the video, enabling us to leverage some powerful tools
in geometry processing for video vectorization. To transfer
the feature boundary information in the segmented video to
the initial mesh, we need to separate the initial mesh into
multiple sub-meshes with each corresponding to one TSP in
the video. For this purpose, we apply a multi-material tetrahe-
dral meshing algorithm Cleaver [24] to the lattice tetrahedral
mesh. Here each TSP is viewed as one material. The Cleaver
algorithm splits each tetrahedron whose four vertices have
inconsistent TSP IDs into several smaller tetrahedra, to ensure
that the feature boundaries detected by video segmentation do
not pass through any tetrahedron. Specifically, there are five
unique interface patterns that Cleaver handles, corresponding
to different patterns of TSP IDs tagged at the vertices (Fig. 2
(a)∼(e)). For each pattern, Cleaver re-meshes the tetrahedron
into smaller tetrahedra considering topology consistency of
adjacent tetrahedra (see Fig. 2). After being processed by
Cleaver, the lattice tetrahedral mesh becomes an even denser
mesh, and it is ready for subsequent simplification. Meanwhile,
this initial mesh has the following properties:
• The tetrahedral mesh is cut into several parts. Each part

corresponds to a TSP of the original video. We call each
part "sub-tet-mesh" in the rest of this paper.

• Each tetrahedron has a unique TSP ID, meaning that it
belongs to only one TSP.

• Each original vertex is located at the internal region of
a tetrahedron, meaning that it has a unique TSP ID, and
we call it an "internal vertex".

• The newly-added vertices on the cutpoints are at sub-pixel
locations so they are shared by tetrahedra with different
TSP IDs. Such a vertex is called a "K-class boundary
vertex", where K is the number of the TSPs sharing the
vertex, so it has been naturally determined by the previous
video segmentation process. Typically K ranges from 2
to 5 in our experiments.

C. Tetrahedral mesh simplification and color optimization

With colors defined at mesh vertices, the initial tetrahedral
mesh is a dense geometric representation of the input raster
video. To remove redundancy in the mesh, we shall simplify
this mesh to obtain a compact representation while maintaining

(a) 0-cut (b) 3-cut (c) 4-cut

(d) 5-cut (e) 6-cut (f) 

Fig. 2. (a)∼(e) The five patterns of TSP IDs tagged at a tetrahedron’s
vertices. (a) Single TSP ID. (b) and (c) 2 TSP IDs. (d) 3 TSP IDs. (e) 4 TSP
IDs. (f): the remeshing result of a 6-cut case. Figures courtesy of Bronson et
al. [24].

an accurate approximation of the color field. To this end, we
apply an edge contraction based simplification method where
the edge contraction operation is guided by an error metric
similar to that used in the Quadric Error Metrics (QEM) mesh
framework in [25]. However, unlike QEM, we introduce an
additional term to encourage mesh uniformity. Please refer to
Section IV for detailed explanations about our simplification
scheme. After mesh simplification, we perform boundary
surface fitting to improve the boundary accuracy of the sub-tet-
mesh. In addition, the colors on vertices are optimized so that
the reconstructed video produces the minimal reconstruction
error.

Given the tetrahedral control mesh associated with color
information, we reconstruct the video in two steps: mesh
subdivision and rasterization. Subdivision aims at generating
a dense mesh with smoother color change and more curved
geometric shape, so as to enhance the quality of the images
produced by rasterization. In this paper, we apply a subdivision
method that extends the subdivision scheme [26, 27] from
surface to the 3D volume. This subdivision scheme ensures
topology consistency of the boundary surfaces of sub-tet-
meshes, while preserving color discontinuities across different
sub-tet-meshes. To rasterize the subdivided mesh with some
specified resolutions, we first find the tetrahedron that a pixel
belongs to and compute its color by linearly interpolating the
colors at the vertices of the tetrahedron.

IV. SIMPLIFICATION OF TETRAHEDRAL MESH

We first segment the input video into NT TSPs so that
the initial tetrahedral mesh consists of NT sub-tet-meshes.
Each vertex vi of the video mesh is associated with 6 values,
including its three-dimensional coordinate x = (x, y, t) in
the video volume and its RGB color c = (r, g, b). Then we
simplify this initial dense mesh by viewing a video as a 3D
manifold in the 6D space, since each vertex v is a 6D vector
[x, y, t, r, g, b]> = [x, c]>. As introduced in the overview, we
perform an edge contraction based mesh simplification method
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which uses Quadric Error Metrics (QEM) [25, 28] to guide the
order of edge contraction. To encourage mesh uniformity, we
further extend the original QEM by introducing an additional
term. To make our paper self-contained, we introduce the
original QEM first and further explain our additional term in
the first sub-section.

A. QEM-based Tetrahedral Mesh Simplification

1) QEM: In [28], edge contraction, also called edge col-
lapse, is proposed as the atomic mesh decimation operation.
With a contraction vj → vi, vj and all tetrahedra incident
to eij are removed, and vi will move to a new position v∗i
minimizing a quadratic error function. The quadric error of
a vertex is the sum of squared distances from the vertex to
the 3D flats (i.e affine subspaces) spanned by the tetrahedra
that are associated with the vertex. Specifically, suppose that
a vertex v is associated with P tetrahedra. Then its quadric
error is

∆(v∗) =
∑

s∈S(v)

D2
s(v∗) =

∑
s∈S(v)

∑
j

ns>j (v∗ − v)

2

(1)

where S(v) is the set of subspaces associated with v, each of
which is spanned by one of the P tetrahedra. Ds(v) is the
distance from v to subspace s, and the nsj are the unit norms
of the subspace s. Using homogenous coordinate ṽ∗ = (v∗, 1),
Eq. 1 can be written as a quadratic form

∆(v∗) =
∑

s∈S(v)

∑
j

ns>j (v∗ − v)

2

(2)

=
∑

s∈S(v)

∑
j

(ns>j ,−ns>j v)ṽ∗

2

= ṽ∗>

 ∑
s∈S(v)

∑
j

(ns>j ,−ns>j v)>(ns>j ,−ns>j v)

 ṽ∗

= ṽ∗>Qṽ∗ = ∆(ṽ∗)

where the quadric error is encoded in the matrix Q. The size
of Q is 7× 7 because ṽ∗ is a 7D vector.

The optimal contraction position v∗ for an edge eij connect-
ing vi and vj is found by minimizing the following objective
function, that is

min
v

v>(Qi + Qj)v (3)

Let ṽ∗ = [x∗, y∗, t∗, r∗, g∗, b∗, 1]> denote the solution to the
above minimization problem. Then the cost of edge contrac-
tion of eij is

Cost(eij) = ṽ∗>(Qi + Qj)ṽ
∗ (4)

After contraction, the accumulated quadratic error Q = Qi +
Qj is inherited by the merged vertex vi.

2) Extended QEM: To produce high quality approximation-
s, Garland and Zhou [28] use a greedy strategy and maintain
a minimal heap keyed on the error cost of edges. In each
iteration, the algorithm selects an edge with the minimal cost
from the heap and performs edge contraction if this contraction
will not cause topology error or tetrahedron flipping, otherwise
the algorithm simply ignores it and tries for another one. In
practice, when applying the conventional QEM to a region
with constant or linear color change, all the QEM error terms
become zero so they provide no guidance on how to select
edges to contract. As a result, such regions will be over-
simplified, causing the entire topology of tetrahedral mesh to
fall in a locked state so that edges cannot be contracted any
more without flipping tetrahedra. To address this problem with
QEM, we introduce a new quadric error terms in our extended
QEM framework. Specially, the quadric error defined for a
vertex not only includes the original quadric error defined in
Eq. 1, but also embodies the squared distance from it to the
average position x̄ of the vertices it inherits from iterative edge
collapse. That is, if a vertex v moves to v∗, the quadric error
is defined as

∆′(v∗) = (1− η)∆([x∗, c∗]>) + η ‖x∗ − x̄‖22 (5)

The introduction of the second term is based on the intuition
that when contracting an edge located at a region where color
field is near constant or linear, we expect the simplified mesh
to be as uniform as possible. The parameter η serves to balance
the two terms. In our experiments η is set to 0.1. Clearly, Eq. 5
can be written in a quadratic form. We initialize the error
matrix for each vertex before edge contraction as follows,

Q′ = Q + η

 I3×3 O3×3 −x
O3×3 O3×3 O3×1
−x> O1×3 x>x

 (6)

To measure the degree of simplification, we define simpli-
fication ratio as the value of the number of vertices in the
simplified control mesh Nc over that in the initial dense
mesh Nv . Our approach can simplify a tetrahedral mesh to
up to 1% of its original size (see Tab. I). Fig. 3 shows two
simplified results for the video CHAMPAGNE, at simplification
ratios 1.0% and 0.5% respectively. For the constant colored
background regions, our method generates large and uniform
tetrahedra and for the feature edges, more tiny tetrahedra exist
to characterize the details. With simplification going on, large
tetrahedra in the background are processed before those near
the features being generated so that the details are faithfully
preserved after simplification.

3) Preserving boundaries: There are two kinds of bound-
aries to be preserved during simplification. One is "internal
boundaries", i.e. the boundaries shared by multiple sub-tet-
meshes, and the other is "external boundaries", corresponding
to 6 outer faces of the video cuboid in 3D space. The
vertices on the external boundaries are further categorized
into "face vertex", "edge vertex" and "corner vertex". During
edge contraction, if two vertices on the edge belong to
different categories, care must be taken to where to select
the optimal contraction position. We assign a priority to each
vertex according to its category to reflect the vertex’s feature



PAPER SUBMITTED TO IEEE TRANSACTIONS OF IMAGE PROCESSING 5

R
at

io
 =

 0
.5

%
R

at
io

 =
 1

.0
%

(a) (b)

Fig. 3. The simplified results for video CHAMPAGNE, at simplification ratios
1.0% (Row 1) and 0.5% (Row 2). (a) The simplified control meshes for the
video. (b) The cross sections at frame 22.

importance, and the optimal position will be determined by the
priorities of the two vertices. Specifically, vertex on the exter-
nal boundaries is prior to non-external, while in non-external
boundary, internal boundary is prior to non-internal boundary.
The contraction position tends to favor those vertices with
higher priority. We illustrate the vertex categories in Fig. 5
and please refer to the table in our supplementary material for
the details of contraction position involving boundary vertices.

B. Boundary Surface Fitting

A sparse control mesh after simplification produced by the
previous simplification step might have its internal boundaries
deviate significantly from their original positions in the input
video. To improve the accuracy of the internal boundaries, we
formulate and solved a surface fitting problem by minimiz-
ing the following objective function optimize the geometric
positions of the vertices on the control mesh as follows,

min
vc

E(vc) = EF (vc) + λEL(vc) (7)

where vc are the vertices of the control mesh, λ a parameter
balancing the energy term on fitting error EF and mesh
deformation error term EL. The fitting error EF is the sum
of squared distances from vertices on the internal boundaries
in the densely subdivided mesh and their target positions on
the original surfaces,

EF (vc) =

Ns∑
k=1

∥∥vtk − vk∥∥22 =

Ns∑
k=1

∥∥vtk − αkvc

∥∥2
2

(8)

where vk and vtk are respectively the position in the subdivided
mesh and the target position of a boundary vertex. Ns is the
number of such vertices. Every vk can be substituted as a linear
combination αk of vertices on the control mesh as defined by
the subdivision masks. The target position vtk is its projection
onto the original boundary surface. Minimizing EF only may
cause flipped tetrahedra because the internal vertices remain
unchanged relative to those boundary vertices. To solve this
issue, we generalize the volumetric graph Laplacian [29] to
the tetrahedral mesh and control the mesh deformation by con-
straining the changes of Laplacian, i.e. the mesh deformation

External boundary

Internal boundary

Corner vertex

Edge vertex

Face vertex

2-class boundary vertex

3-class boundary vertex

Internal vertex

Fig. 5. Vertex categories, marked with separate colors. The tetrahedral
mesh for a video is a cuboid, its 6 faces are "external boundaries". The red
dashed line segments represent "internal boundaries" shared by multiple sub-
tet-meshes (marked as 3 colored regions in the figure).

error EL. The Laplacian coordinate of a vertex encodes the
difference between the vertex and a linear combination of its
neighboring vertex. EL is therefore expressed as

EL(vc) =

Nc∑
k=1

∥∥∥δk − δ̃k∥∥∥ =

Nc∑
k=1

‖lkvc − lkṽc‖22 (9)

where δ̃k and δk are the Laplacian coordinates of vk before
and after optimization separately. Nc denotes vertex number of
the control mesh. ṽc represents positions of the vertices before
optimization. lk is a 1 × Nc vector encoding the coefficients
to compute δk. We set δk as

δk = vk −
1

|Nk|
∑

vj∈Nk

vj (10)

where Nk is the set of neighbors of vk and |Nk| is its
cardinality.

The solution to Eq. 7 is

vc = (A>A + λL>L)−1(A>vt + λL>Lṽc) (11)

where A is a Ns ×Nc matrix with each row being αk. L is
a Nc × Nc matrix with each row being lk. vt is a Ns × 3
matrix composed of all vtk with k = 1, 2, ..., Nc. λ is set to
1.0 in implementation. The energy function 7 can be optimized
by iterations to get an optimal and stable solution. We use 5
iterations in our implementation.

C. Color Optimization

The above steps simplify and optimize only the positions of
all mesh vertices. After that, we globally optimize the colors
of these vertices. We optimize an energy term EC formulated
similar to EF in Eq. 8, but we use vc to encode colors instead
of geometric positions, while Ns becomes the total number of
vertices in the subdivided mesh, and vtk represents the color
sampled at the 3D position of the nearest vertex to vk within
the sub-tet-mesh it belongs to. We use the Conjugate Gradient
(CG) algorithm to solve a sparse linear system for minimizing
this energy.

V. SUBDIVISION OF TETRAHEDRAL MESH

We shall introduce in this section a tetrahedral mesh sub-
division technique for reconstructing a raster video from a
vectorized video represented as a tetrahedral control mesh. The
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Fig. 4. Illustration of tetrahedral mesh subdivision. (a) A tetrahedron is replaced by 8 tetrahedra. (b) Subdivision masks defined on boundary vertices with
left for vertex points and right for edge points. (c) Subdivision masks defined on internal vertices with left for vertex points and right for edge points. (d) A
2D illustration of subdivision. By inserting new vertices (in red) on the edges and updating the positions of the original vertices, the line segments become
curved after a subdivision step. If we view y axis as the color, after the subdivision, the color also becomes smooth.

(a) Control mesh (d) Subdivided mesh(b) Zoom-in view of 
red boxes in (a)

(e) Zoom-in view of 
red boxes in (d)

(c) Zoom-in view of 
pink boxes in (b)

(f) Zoom-in view of 
pink boxes in (e)

Fig. 6. Control mesh vs. subdivided mesh. Cross sections of the two meshes at frame 28 of video CHAMPAGNE. Two rows are visualization of the non-wired
and wired results, respectively. By subdividing the mesh, the tetrahedrons become denser in (d) compared with in the control mesh (a). (e) Compared with
(b), after subdivision, the color of the rendered frame becomes smooth. (f) Subdivision makes the boundaries more curved compared with those in the control
mesh (c), which contains obvious zig-zag artifacts.

simplified control mesh occupies the whole 3D video volume
and consists of NT sub-tet-meshes yielded by the Cleaver
algorithm where NT also denotes the number of TSPs. The 3
color channels of RGB are viewed as 3 scalar fields separately
defined on the 3D domain. Since the simplified control mesh
is sparse, directly rasterizing such a sparse control mesh will
bring two kinds of visual artifacts:

1) Zigzag non-curved boundaries caused by geometrically
non-smooth surface between sub-tet-meshes.

2) Non-smooth color transition within each sub-tet-mesh
caused by linear interpolation of rasterization.

Fig. 6(c) and (b) illustrate the two types of artifacts respec-
tively, and we apply mesh subdivision to addressing these two
issues.

A. Subdivision Method

Subdivision is a powerful and easily implemented algo-
rithm used to smooth meshes. The smoothing procedure is
accomplished by inserting new vertices between edges and
updating the positions of the original ones. Taking 2D line
segments as a toy example (Fig. 4(d)), by inserting new
vertices on the edges, the original line segments become
curved, where the positions of the newly-inserted vertices
are the linear combinations of the original ones. This idea
is widely used in generating smooth triangular meshes such
as Loop’s subdivision algorithm [26], which is recommended

to read for a better understanding of this problem. If color is
also defined on the vertices, the linear combination will be
also applied to it, making the color smoothed as the shape of
the mesh.

Our problem involves tetrahedral mesh instead of triangular
mesh. So we extend the method in [26] as follows. Let M =
M0 represent the simplified control mesh. Our subdivision
procedure Ms → Ms+1 works by first computing vertex
positions of Ms+1 as affine combinations of their adjacent
vertices in Ms, according to a set of subdivision masks defined
on vertices and edges so that each vertex in Ms+1 is either
updated by a vertex point or derived from an edge from Ms.
Then we replace each tetrahedron by 8 tetrahedra. We use the
masks defined in [30] in implementation (see Figs. 4(a) and
4(c))

Vertex point: v̂i =
18

32
vi +

14

32k

∑
vj∈Ni

vj ,

Edge point: v̂ij =
10

32
(vi + vj) +

12

32k

∑
vl∈Nij

vl

where the v̂i and v̂ij are vertex and edge point respectively,
Ni and Nij the set of neighboring vertices of vertex vi and
the set of edge eij , respectively, and k is the number of
elements in the corresponding set. The above scheme smoothes
both the mesh vertices as well as their associated colors.
However, the boundary vertices tend to be pulled inward
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(a) (b)

(c)

Fig. 7. Subdivision at the boundary surfaces of sub-tet-meshes. Each color
represents a sub-tet-mesh and points close to each other denote duplicates
of a boundary vertex in its incident sub-tet-meshes. (a) A 2-class boundary
vertex (the middle one), the adjacent relations of the two sub-tet-meshes (the
navy and green) are the same. (b) 3 sub-tet-meshes meet and result in 3-class
boundary vertices (marked by dashed circles). (c) The interfaces seen from
the view angle as in (b). For a 3-class vertex (the middle one), its 3 duplicates
(navy, green, red) will update the positions with the affine combination of the
neighbors in their own sub-tet-meshes, yielding an inconsistent position and
a "gap" among the sub-tet-meshes (right).

by the internal ones if we apply the masks in [30] to both
kinds of vertices indiscriminately. This will cause each sub-tet-
mesh to shrink and finally lead to "gaps" between neighboring
sub-tet-meshes. To overcome this problem, we apply Loop’s
subdivision masks [26] to the boundary vertices instead so that
positions of the boundary vertices are updated independent of
the internal ones during subdivision.

B. Discontinuity Preservation at Boundaries

With the above subdivision method, at the boundaries of
sub-tet-meshes the color will be non-smooth, though still
continuous, since the boundary vertices are often shared by
multiple sub-tet-meshes. To model color discontinuities across
sub-tet-meshes, we further explicitly split the tetrahedral mesh
at boundary surfaces of all the sub-tet-meshes. Specifically,
we create Ki duplicates (including the original one) for each
boundary vertex vBi that is shared by Ki sub-tet-meshes, and
assign duplicate to each of its incident sub-tet-meshes. To
make all the duplicates of vBi always meet at a common posi-
tion, we impose the constraint for K-class boundary vertices
(K > 2) that their positions should keep unchanged during
subdivision. On the contrary, for a K-class boundary vertex
with K ≤ 2, the positions can be updated independently, since
the adjacent relations are the same at each side of the sub-tet-
meshes (Fig. 7(a)).

Fig. 6 shows the cross sections of a control mesh and
its subdivision mesh at frame 28 of video CHAMPAGNE.
By comparing the control mesh with its subdivided mesh,
we can see the boundaries and color within all the regions

ty

x
t

T(a)

t
0

t
1

t
2

t
0

t
1

(b)

Fig. 8. (a) The 3D view of the sliding window in a video, moving along time
axis. Red line represents the sliding boundary. (b) left: the 2D side view of
the sliding window in 3 time steps. right: the illustration of the simplification
in each sliding window. At t0, the tetrahedrons at the sliding boundary (red)
is fixed. With the sliding window moving half of the window size, in t1 they
are simplified while the tetrahedrons at t1’s sliding boundary is still fixed.

become smooth (Fig. 6(e)(f)) while the color discontinuity at
the boundaries is still faithfully preserved.

VI. STREAMING PROCESSING OF TETRAHEDRAL MESH

The method introduced above is valid but requires the whole
video data to be entirely loaded into memory before sim-
plification and subdivision. Obviously with limited memory
resources, this strategy can handle several frames only, which
is far from what we expect in practise. For this sake, we
develop a strategy of streaming processing to solve this issue.

The strategy works as follows. First, the video data can be
viewed as a volumetric shape in 3D, as illustrated in Figs. 3(a)
and 8(a). In the box-shaped video data, we introduce a sliding
window where our algorithm locally generates a small part
of the mesh every time. The sliding window is designed to
move along the time axis, and its length is specified as T
(Fig. 8(a)). With the window sliding through the entire data,
the final mesh is generated and the memory cost can be limited
to be proportional to the window size, which makes it more
controllable and flexible for video processing.

However, directly simplifying the mesh within each sliding
window independently cannot preserve the topology consisten-
cy across the windows, so the sliding boundary, the boundary
surface in the time direction (red lines in Fig. 8(b)) has to be
carefully handled to keep consistency. Our strategy is that at
current position tcur, the tetrahedrons on the sliding boundary
is fixed, considering the lack of neighbor information in next
sliding window. We then move the sliding window forward
for half of the window size. After the sliding window moves
forward, the tetrahedrons on the last sliding boundary change
to internal ones so that they can be simplified properly. The
procedure runs iteratively until the sliding window moves to
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the end of the sequence. Fig. 8(b) illustrates the procedure.
In our experiments, we found setting T to 10 brings us
the vectorized videos with smooth frame transition and peak
memory cost kept lower than 8GB. A group of the detailed
memory cost data is shown in Table I.

VII. EXPERIMENTAL RESULTS

We have implemented our video vectorization algorithm and
tested it on a variety of raster videos. Our results can be found
in Figs. 9, 10, 11, 12 and 15, as well as the accompanying
video1.

We first choose two synthesized videos to test our algorithm.
Fig. 10 shows two video clips from TV ads, which contain
sharp visual features, considerable object motions, as well as
details. For example in the video IPHONE, the dark spot near
the flash is so tiny making it easily lost when the video is
represented as a sparse mesh. While in the video CHOCOLATE,
frequent motion of salient edges makes it difficult to generate
a compact, yet still accurate vectorized video. However, in our
reconstructed video these features are faithfully preserved and
frame transition is smooth. In terms of the visual quality of
individual frame, our method also produces reasonably good
results, which can be compared with those generated by image
vectorization method [5].

In Figs. 9 and 11, we show the results for two videos record-
ing the process of flower blooming. Unlike the two synthesized
videos above, both videos contain many irregular motions
of the foreground objects as well as occlusion and visibility
change. The two factors indeed make it more challenging for
us to simplify the tetrahedral mesh and to keep the temporal
coherence. Although the simplification ratio is set to 1.0%, our
approach still produces faithfully reconstructed videos without
apparent visual artifacts. Since it is resolution-independent,
a vectorized video can be magnified at arbitrary resolution.
To illustrate the sparsity of the control mesh, we visualize
the cross sections of the mesh at the corresponding frame
positions. Large tetrahedra are generated by our approach to
represent those flat background, while more detailed tetrahedra
are produced near the region containing substantial color
variation which are used to characterize local details, e.g. the
flower cores, the boundaries of petals and stems, etc. Some
zoom-in views of the cross sections of the subdivided meshes
are also illustrated for better visualization.

A. Comparison

1) Temporal Coherence: To show the importance of frame
coherence, we first compare our method with a state-of-the-
art image vectorization method [5], which is applied to each
video frame individually, frame by frame. Such an image
vectorization method is expected to produce higher quality
result, but when applying it to each of the video frames,
we have found that the reconstructed video is unstable and
annoying visual artifacts like flicker present. This is because
applying the image vectorization method to each video frame
directly cannot preserve the spatio-temporal coherence of the

1You may also see it from the following link: https://goo.gl/mg3hxN
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Fig. 14. δF (k) and reconstruction error, for video MOUNTAIN.

video, even after a carefully parameter is tuned. For example,
for the video IPHONE in Fig. 10, frame 37 in Liao et al.’s
results is rather good as the edges around the camera is sharp
and smooth; while in frame 86, some edges and a small black
spot are lost. Such visual features, however, are well preserved
in our results.

In order to weaken the influence of complex motion to the
results, in Fig. 14 we show the results for a video sequence
with smooth motion, MOUNTAIN. In the video the cloud
moves slowly, while the mountain is almost static in the
distance. Even with such relatively simple settings, the frame-
by-frame method [5] produces unstable results with flickering,
as the accompanying video shows. In contrast, our method
yields very stable results and sharp features are well preserved,
with a 2.0% simplification ratio. To quantitatively characterize
the temporal coherence, we compute the change of optical
flow throughout the entire video sequence. Specifically, we
first accumulate the summed square distance δF (k) between
the optical flow maps of every two successive frames of the
video, fk and fk+1. The sum further regularized by the total
number of video pixels is taken as the measure of temporal
smoothness for the entire video frames, noted as ∆F .

Intuitively, severe flickering will lead to a high ∆F since
optical flow will change frequently. To visualize the results,
Fig. 14 plots δF (k) for every two successive optical flows on
the results of MOUNTAIN by our and Liao et al.’s method,
comparing with the original video. We can see our result is as
stable as the input video.

2) Reconstruction Error: We further evaluated the recon-
struction quality in terms of per-pixel reconstruction error,
which is also used by previous image vectorization methods.
The results show that our method achieves lower reconstruc-
tion error compared to [5] with the same simplification ratio.
In Fig. 14 right, we plot the reconstruction error for each
frame of the video MOUNTAIN. The simplification ratio in this
example is set to 2.0% for both methods. The curve illustrates
that for most frames our method yields lower reconstruction
error than Liao et al.’s approach, which also means more
accurate reconstruction. Fig. 12 also reveals some details in the
results of both methods. Although the highly textured regions
like the lawn become blurry that are beyond the capability
of vector representation, our method still preserves those
sharp features. For example, our rasterized video faithfully
reconstructs the mountain ridge. The overall reconstruction
errors are 3.00/pixel and 3.07/pixel for our and Liao et al.’s
results respectively.

We also analyzed how the simplification ratio affects the

https://goo.gl/mg3hxN
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(a) Original frame (c) Reconstructed frame (e) Details in white box (16x)

(f) Details in yellow box (16x) (d) Difference map(b) Cross section (g) Details in blue box (16x)
(h) Upsamping result 

by nearest neighbor interpolation

Fig. 9. Vectorization of the video BLOOMING I, at frame 67. (a) The original frame. (b) The cross section of the simplified control meshes at the same
position of frame 67. (c) The reconstructed frame from the vectorized video representation. (d) Difference map between the reconstructed frame and original
frame. Figures (e), (f), and (g) are the zoomed-in views of the box regions in (c), magnified at 16× resolutions. (h) The upsampling result of the region in
the original frame, corresponding to the blue box in (c), by nearest neighbor interpolation (16×). Please refer to the accompanying video for this and the
other results in this paper.
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(a) Original frames (b) Results by image-based
vectorization method

(c) Our results (b) Zoom-in views of box regions (top: red, bottom: yellow) in (a), (b) and (c)

Fig. 10. Reconstructed frames in video IPHONE and CHOCOLATE, grouped in top and bottom 2 rows. In each group, each row shows results of one frame.
Columns from left to right: (a) The original frames. (b) Image-based vectorization results by [5]. (c) Our results. (d) is zoom-in views of the regions circled by
the same color boxes in (a), (b) and (c). Results show that our method faithfully reconstructs the details and more importantly ensures the temporal coherence.
Taking the IPHONE video as an example, from Frame 37 to 84, the dark spot near the flash is lost by the image vectorization method although the same
parameter is set for both frames. But it remains in our results (red boxes). Likewise, our method also produces consistent vectorized details for the main edges
in the video CHOCOLATE, while blurry edge is produced in Frame 89 by Liao et al.’s method (yellow boxes).

reconstructed image quality with the video MOUNTAIN shown
in Fig. 13, with ratio settings 2%, 5%, 10% and 20%. We
found that with higher ratio values, more texture details
became visible, e.g. the edges in the cloud. We also computed
the reconstruction errors for these settings, i.e. 3.00/pixel to
2.23/pixel for 2% to 20%, demonstrating the image quality is
better preserved with more tetrahedrons.

Fig. 15 shows results for three additional real videos and
one animation, DOG. The reconstruction error of our results
is typically around 2.0/pixel, and simplification ratios are set
no larger than 2.0% except for the animation containing large
motions in the foreground (the dog) and textured background,
which is 5.0% instead. All our results look smooth without

flicking artifacts. We list the statistics data in Table I for
detailed references.

3) Computational Cost and Storage: Our algorithm runs
in a streaming mechanism so that the memory required for
the initial mesh can be controlled. The length of the sliding
window T was set to 10 in our experiments. With this setting,
our algorithm typically costs less than 8GB RAM and takes
≈ 60 minutes for a video of size 640× 360× 70 on an Intel
Core i7 @3.40 GHz processor, in comparison with ≈ 1GB
RAM and ≈ 40 seconds for a single image of the same size
by image vectorization [5]. In terms of computational cost
for vectorizing a video, while our method does not reveal
its outperformance compared with image vectorization which
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(a) Original frames (b) Cross sections (c) Reconstructed 
frames (d) Difference map (e) Zoom-in views 

in box regions in (c)
(f) Mesh view of (e)

Fig. 11. Results of video BLOOMING II at frames 19, 45 and 73 (Rows 1∼3). The original video is of size 640× 360× 95. (a) Original frames. (b) The
cross sections of the control tetrahedral meshes at corresponding frames. (c) Our reconstructed frames (d) The difference maps. (e) and (f) are the magnified
details (16×) of the box regions shown in (c) and their corresponding cross sections of the subdivided meshes.

(a) Original frame (d) Difference map of (b) (e) Difference map of (c)

(b) Liao et al.’s result (c) Our result

(f) Nearest 
neighbor

(i) Original frame 
in HD version

(g) Liao et al’s
result (8x)

(h) Our result
 (8x)

Fig. 12. Results of video MOUNTAIN. (a) Original frame. (b)(c) Reconstructed frames by Liao et al’s and our methods. (d)(e) Difference maps of (b)(c)
respectively. (f)(g) and (h) are zoom-in views of the red box regions in (a), by nearest neighbor interpolation, Liao et al.’s and our methods respectively,
rastered at 8× resolution. (i) is the red box region in the HD-version original frame. Compared with (i), our result (h) preserves the sharp feature at the
mountain ridge.

(a) Simp. Ratio: 2% (c) Simp. Ratio: 10%(b) Simp. Ratio: 5% (d) Simp. Ratio: 20%

Fig. 13. Reconstructed image quality in various simplification ratios. (a) ∼ (d): reconstructed frame 32 of video MOUNTAIN by simplification ratios 2% to
20%, with reconstructed errors being 3.005/pixel, 2.827/pixel, 2.615/pixel and 2.231/pixel. In the zoom-in views (the second row), more texture details
such as the edges in the cloud become visible with higher ratio settings.

does not need to concern continuity of vectorized results across
frames. Considering our algorithm handles not only frames but
also inter-frame connections, we believe our method is still
comparable with theirs because on average each frame costs
0.8GB RAM and ≈ 50 seconds.

For the amount of storage required, we applied the stream-
ing compression algorithm specifically designed for tetrahedral
volume meshes [31] to our generated tetrahedral mesh. We al-

so achieved comparable results to those produced by applying
zip compression to the triangular meshes of the video frames
generated by Liao et al’s method. We show the time, memory
cost and storage in Table I.

B. Limitations
We have shown that our method can deal with a wide variety

of videos. One limitation for vectorizing a video is that it
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(a)

(c)

(b)

(d)

Fig. 15. Reconstructed frames from our vector video representation for four videos. (a) ∼ (d) CHAMPAGNE, BANANA, DESERT and DOG. The odd rows
show the original frames and even rows show the corresponding frames from our reconstructed videos. See our accompanying video for more details.Table 1: My caption

Resolution
Ours Liao et al.’s

S.R. R.E. Time RAM RAM/frame Storage S.R. R.E. Time RAM Storage
BLOOMING I 640×360×70 1.0% 2.163 3,442s 7.25GB 0.73GB 2.51MB 1.0% 2.936 2,741s 1.12GB 2.36MB
BLOOMING II 640×360×95 1.1% 2.862 4,548s 7.18GB 0.72GB 3.73MB 1.5% 3.042 3,691s 1.11GB 3.25MB

DOG 373×270×57 5.0% 4.293 1,408s 3.57GB 0.36GB 3.70MB 5.1% 5.014 1,345s 0.43GB 4.12MB
IPHONE 480×270×100 0.5% 1.325 2,698s 4.34GB 0.43GB 813KB 1.1% 1.379 1,987s 0.52GB 876KB

CHAMPAGNE 480×270×100 0.5% 2.914 2,454s 4.52GB 0.45GB 933KB 1.0% 3.899 2,198s 0.57GB 1.02MB
CHOCOLATE 448×252×100 1.0% 1.523 2,897s 3.48GB 0.35GB 1.48MB 1.0% 1.571 1,996s 0.43GB 1.62MB
MOUNTAIN 406×231×70 2.0% 3.005 1,775s 2.87GB 0.29GB 1.88MB 2.0% 3.079 1,057s 0.46GB 1.92MB

DESERT 508×288×80 1.0% 2.637 2,435s 5.10GB 0.51GB 1.62MB 1.1% 3.047 1,724s 0.67GB 1.87MB
BANANA 450×256×160 2.0% 2.866 3,492s 2.56GB 0.26GB 5.20MB 2.0% 2.928 3,061s 0.57GB 5.04MB

1

TABLE I
PERFORMANCE COMPARISON: OURS VS. LIAO ET AL.’S METHOD. S.R. AND R.E. ARE SHORT FOR SIMPLIFICATION RATIO AND PER PIXEL

RECONSTRUCTION ERROR, RESPECTIVELY. NOTE THAT RAM FOR OUR METHOD WAS TESTED WITH THE SLIDING WINDOW T = 10, SO WE ALSO SHOW
THE PER FRAME COST IN COLUMN RAM/FRAME. FOR THE AMOUNT OF STORAGE OF LIAO ET AL.’S METHOD, IT IS EVALUATED UNDER THE SAME

SIMPLIFICATION RATIOS SPECIFIED IN OUR METHOD.

Fig. 16. Failure case caused by rapid motion in the video RHINO. Frame
No. 14 of the original frame (left) and our constructed result (right). In this
example, the control mesh is simplified to a ratio of 5.0%. From AFRICA
(2013) ( c©BBC).

may not be suitable to represent video objects with fine and
rapidly changing details, as image vectorization methods are
vulnerable to highly detailed image regions such as textures.
For such cases, the reconstruction error will be relatively large.
For example for a video of a running rhino shown in Fig. 16,
the segmented TSPs contain sharp color change because of the
rapid motion. This leads to color mix-up across sharp features.

VIII. CONCLUSIONS

We have presented a vector-based video representation and
its associated video vectorization and reconstruction methods.
The core of our method is the simplification and subdivi-
sion of tetrahedral meshes defined over the spatial-temporal
video volume. Our vector-based video representation offers

the benefits usually found in vector graphics, such as com-
pactness and scalability, as indicated by our experiments and
comparisons. Since editability is another advantage of vector
graphics compared with raster graphics, as future work we
plan to explore the applications such as shape editing and
color editing that will benefit from the editability of our video
vector representation.
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