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Abstract

We present a new data-driven video inpainting method for
recovering missing regions of video frames. A novel deep
learning architecture is proposed which contains two sub-
networks: a temporal structure inference network and a spa-
tial detail recovering network. The temporal structure infer-
ence network is built upon a 3D fully convolutional architec-
ture: it only learns to complete a low-resolution video vol-
ume given the expensive computational cost of 3D convolu-
tion. The low resolution result provides temporal guidance to
the spatial detail recovering network, which performs image-
based inpainting with a 2D fully convolutional network to
produce recovered video frames in their original resolution.
Such two-step network design ensures both the spatial qual-
ity of each frame and the temporal coherence across frames.
Our method jointly trains both sub-networks in an end-to-end
manner. We provide qualitative and quantitative evaluation
on three datasets, demonstrating that our method outperforms
previous learning-based video inpainting methods.

Introduction
Given an image or a video with holes inside (e.g. generat-
ed by object removal), inpainting (also called completion)
techniques try to recover the missing video content to pro-
duce a natural looking result. This problem has drawn great
attention in the past two decades due to strong industrial de-
mands on image and video editing applications. Inpainting
is a very challenging task as the requirements are two-fold:
(1) the generated content in the missing regions must be se-
mantically correct given their surrounding content; and (2)
the missing regions need to be filled in a seamless way so
that the original holes are visually unnoticeable.

In this work, we focus on video inpainting, an extend-
ed problem from image inpainting with the added tempo-
ral dimension. Such extension brings new technical chal-
lenges that are difficult to resolve. First, recovering miss-
ing video content requires the understanding of not on-
ly the spatial context of each frame, but also the mo-
tion context across frames. Second, the output video must
maintain high spatio-temporal consistency, in both global
context-level and local image-feature-level. Although there
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Figure 1: Video inpainting results by our approach. Row 1,
3: input frames with missing regions (shown in gray). Row
2, 4: our results. Note that the filled regions contain rich im-
age details and are temporally coherent.

has been tremendous progress in image inpainting, e.g.
patch-based image synthesis (Barnes et al. 2009; 2010)
and deep learning based approaches (Pathak et al. 2016;
Iizuka, Simo-Serra, and Ishikawa 2017), a direct extension
of those methods in 3D would not work well for video in-
painting. Specifically, (Wexler, Shechtman, and Irani 2007;
Venkatesh, Cheung, and Zhao 2009; Newson et al. 2014;
Huang et al. 2016) have tried to extend spatial 2D patch
synthesis to spatial-temporal 3D patch synthesis. However,
local synthesis, even in 3D space, cannot guarantee global
semantic correctness. Moreover, directly applying image in-
painting networks to each frame individually often leads to
temporally jittering results that are visually unacceptable, as
we will demonstrate later.

We present a novel end-to-end deep learning architecture
to tackle the above issues for high quality video inpainting.
As shown in Fig. 2, the network consists of a temporal struc-
ture prediction sub-network and a spatial detail recovering
sub-network. The former sub-network treats a video as a
3D volume. It takes a down-sampled version of the origi-



nal video as input, and fill the holes in it using 3D CNN
with an Encoder-Decoder architecture. We use this output
volume as temporal structure guidance, since it captures the
motion structure across time but lacks spatial details. The s-
patial detail inference network then takes the original video
and the temporal structure guidance as input, and generates
completed video frames in their original resolution. It has
a 2D Encoder-Decoder architecture with global and local
l1 consistency losses. These two sub-networks are jointly
trained and can benefit from each other. In other words, the
temporal structure guidance improves both the temporal s-
moothness and the context consistency of the final video.
Meanwhile, the loss of the spatial detail recovering network
is also back-propagated into the first network and helps im-
prove the accuracy of temporal structure prediction.

In summary, our main contributions are:

• it is the first work to use deep neural networks for solving
the problem of video completion. Compared with existing
methods, the proposed algorithm can deal with the video
with complex appearances and large missing regions;

• we design a novel deep learning architecture that uses 3D
CNN for temporal structure prediction and 2D CNN for
spatial detail recovering, where the output temporal struc-
ture is fused into the 2D CNN to guide the detail infer-
ence;

• we perform joint training of the two sub-networks, which
further improves the performance of the overall system.

Related Work
In this section, we introduce the related works in the fol-
lowing three aspects and refer the readers to the works
of (Chhabra and Birchha 2014) and (Ilan and Shamir 2015)
for detailed literature review of image/video inpainting.

Patch-based image/video inpainting. To fill in the holes
using patch-based synthesis is the most used traditional s-
trategy for image inpainting. This was firstly proposed in (E-
fros and Leung 1999), where the missing contents are recov-
ered in a region-growing way: the method starts from bound-
ary of holes and extends the region by searching appro-
priate patches and assembling them together. Following up
this work, there are many different directions for improve-
ment in searching and optimization (Kwatra et al. 2005;
Wexler, Shechtman, and Irani 2007; Barnes et al. 2009;
2015), or for application like face (Zhao et al. 2018;
Yamaguchi et al. 2018). It is also adapted to video in-
painting problem by replacing 2D patch synthesis with 3D
spatial-temporal patch synthesis across frames. This was
firstly proposed in (Wexler, Shechtman, and Irani 2004;
2007) to ensure the temporal consistency of the generat-
ed video and later improved in (Jia, Hu, and Martin 2005;
Venkatesh, Cheung, and Zhao 2009) to handle more com-
plicated video input. However, all of these works are de-
signed for the video with repeated content across frames.
They are unable to tackle the problem we proposed in this
paper where missing parts cannot be replaced by similar
content in the input. Resorting to a large video dataset, we

try to train a CNN in this work for missing contents predic-
tion based on the high-level context understanding.

Image completion using 2D CNN. Recently, Convolu-
tional Neural Network was firstly used in (Xie, Xu, and
Chen 2012) for image inpainting but only for small holes.
Pathak et al. (Pathak et al. 2016) then proposed to deal with
large missing regions using an encoder-decoder architecture
which can efficiently learn the context feature of the image.
For high-resolution image inpainting, Yang et al. (Yang et
al. 2017) developed a multi-scale neural patch synthesis al-
gorithm that not only preserves contextual structure but al-
so produces high-frequency details. The algorithm proposed
in (Iizuka, Simo-Serra, and Ishikawa 2017) further improves
the performance by involving two adversarial losses to mea-
sure both the global and local consistency of the result. D-
ifferent from the previous works which only focus on box-
shaped holes, it also develops a strategy to handle the holes
with arbitrary shapes. To extend these methods from image
to video domain is a challenging task, because video com-
pletion not only needs to have an accurate context under-
standing of both frames and motions, but also requires to
ensure temporal smoothness of the output. In this paper, we
propose a novel deep learning architecture for this problem
which takes use of both 2D and 3D CNNs to jointly learn
the temporal structure and spatial details.

Shape completion using 3D CNN. Another series of
works related to our paper is using 3D CNN for 3D shape
completion. Similar to deep learning based image inpaint-
ing, most of the methods such as (Sharma, Grau, and Fritz
2016; Varley et al. 2017; Dai, Qi, and Nießner 2017) uses
encoder-decoder architecture but with 3D CNN for solving
this problem. However, all these techniques can only handle
low-resolution grids (typically 303 voxels) due to the high
computational cost of 3D convolutions. To address this is-
sue, many approaches are proposed most recently. Resort-
ing to a dataset, Dai et al. (Dai, Qi, and Nießner 2017) used
patch retrieval and assembly as a post-processing to refine
the low-resolution output of encoder-decoder network. For
such post-refinement, the method in (Wang et al. 2017b)
proposed a strategy to slice the low-resolution output into
a sequence of images and did super-resolution and comple-
tion for each sliced image with a recurrent neural network.
Han et al. (Han et al. 2017) designed a hybrid networks for
jointly global structure prediction and local geometry infer-
ence. Our work is inspired by this method but differs from it
in two aspects. Firstly, the method of (Han et al. 2017) con-
ducted the completion in a region-growing way while ours
is an end-to-end architecture for completion. Secondly, for
details inference, the method in (Han et al. 2017) only looks
at a local region which lacks much surrounding context in-
formation while our algorithm uses the content of the whole
image for missing information recovering.

Algorithm
Our method is built upon deep neural networks. It takes an
incomplete video Vin and a mask video M as input, and
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Figure 2: Network architecture of our 3D completion network (3DCN) and 3D-2D combined completion network (CombCN).
The 3DCN works in low resolution, producing an inpainted video as output. Its individual frames are further convolved and
added into the first and last layer of the same size in CombCN. The input video for 3DCN and the input frame for CombCN,
shown as gray blocks, are in 4-channel format, containing RGB and the mask indicating the holes to be filled.

produces an complete video Vout as output. The incomplete
video is represented as a F ×H ×W volume, where F , H ,
W are number of frames, height and width of Vin. M and
Vout are of the same size as Vin. In training stage, Vin is
obtained by randomly generating holes on a complete video
Vc, i.e. the target ground truth of the inpainting task.

To produce a spatial-temporal coherent inpainted video,
our network consists of two sub-networks. One network is a
3D completion network (3DCN), which utilizes 3D CNN to
infer the temporal structure globally from a down-sampled
version (F×H

r ×
W
r ) of Vin andM . In this paper, we use su-

perscript d to distinguish the downsampled videos from their
original versions. So 3DCN takes V d

in and Md as input and
produces V d

out as output. Another sub-network is a 3D-2D
combined completion network (CombCN). It applies 2D C-
NN to perform completion frame by frame. The input of this
network includes one incomplete but high-resolution frame
of Vin with its mask frame of M , and a low-resolution but
complete frame Id,kout of V d

out (k = 1, 2, ..., F ). In our paper,
F , H , W , r are set to 32, 128, 128 and 2 respectively.

Temporal structure inference by 3DCN
A video inpainting task requires not only filling the miss-
ing part within each frame but also keeping the consisten-
cy between successive frames. For this reason, it would
fail if directly apply the existing image inpainting meth-
ods such as (Iizuka, Simo-Serra, and Ishikawa 2017) to
video frames separately, because they lack the mechanis-
m of preserving temporal coherence. On the other hand,
video can also be viewed as a spatial-temporal volume and
its temporal structure could be preserved when algorithm-
s are globally applied to it, such as (Wang et al. 2017a;
Hara, Kataoka, and Satoh 2017; Wang et al. 2014). To this
end, we apply 3D CNN globally to video inpainting. How-
ever, due to the expensive memory cost of 3D convolutions,
we only utilize 3D CNN on a down-sampled version V d

in of
the input video. The 3D completion network can generate an
inpainted video V d

out which captures the temporal structure
of the original video, even though its individual frame lacks
details.

Our 3D completion network follows an encoder-decoder

structure and consists of 12 layers totally. Given the incom-
plete video and its mask as input, it first exploits 4 strided
convolutional layers to encode it to a latent space, captur-
ing its temporal-spatial structure. Then 3 dilated convolu-
tional layers with rate 2, 4, 8 are followed to capture the
spatial-temporal information in larger perception field. At
last, video inpainting is finally achieved by 3 convolution-
al and 2 fractionally-strided convolutional layers in an al-
ternative order, yielding the result with missing part filled.
Rather than using the max-pooling and upsampling layer-
s to compute the feature maps, we employ 3 × 3 convolu-
tion kernels with stride of 2, which ensures that every pix-
el contributes. Meanwhile, considering that non-successive
frames may have loose relations with the current one, and
to avoid information loss across frames, we limit stride and
dilation to take effects only within frame rather than across
frames. As a result, the feature map of each layer has a con-
stant frame number F . Besides, all the convolutional lay-
ers are followed by batch normalization (BN) and ReLU
non-linearity activation except the last one. Paddings are in-
volved to make the input and output have exactly the same
size. The skip-connections as U-Net (Ronneberger, Fischer,
and Brox 2015) are also employed to facilitate the feature
mixture across encoder and decoder. The detailed configu-
ration of our 3D completion network is illustrated in Fig. 2
(a) and listed in Table 1 (top) (BN and ReLU are not shown
for brevity).

Training. Let Gv(V
d
in,M

d) = V d
out denotes the 3DCN in

a functional form. The binary masksMd andM take the val-
ue 1 inside regions to be filled-in and 0 elsewhere. The pix-
els of V d

in and Vin inside the mask region are pre-filled with
the mean pixel value of the training dataset before feeding
it to the network. During training, we minimize the l1 norm
the difference between V d

out and V d
c . The difference is also

weighted considering the completion region mask is used.
Specifically, the l1 loss of 3DCN is defined by:

L3DCN (V d
in,M

d, V d
c ) =

‖Md � (Gv(V
d
in,M

d)− V d
c )‖

‖Md‖
(1)



Layer No. Type Kernel Stride Channel Dilation Layer No. Type Kernel Stride Channel Dilation
1 conv. 5 1 16 - 7 dilated conv. 3 1 256 8
2 conv. ↓ 3 2 32 - 8 conv. 3 1 128 -
3 conv. 3 1 64 - 9 deconv. ↑ 4 2 64 -
4 conv. ↓ 3 2 128 - 10 conv. 3 1 32 -
5 dilated conv. 3 1 256 2 11 deconv. ↑ 4 2 16 -
6 dilated conv. 3 1 256 4 12 conv. 3 1 3 -

Layer No. Type Kernel Stride Channel Dilation Layer No. Type Kernel Stride Channel Dilation
1 conv. 5 1 64 - 10 dilated conv. 3 1 256 16
2∗ conv. ↓ 3 2 128 - 11 conv. 3 1 256 -
3 conv. 3 1 128 - 12 conv. 3 1 256 -
4 conv. ↓ 3 2 256 - 13 deconv. ↑ 4 2 128 -
5 conv. 3 1 256 - 14 conv. 3 1 128 -
6 conv. 3 1 256 - 15∗ deconv. ↑ 4 2 64 -
7 dilated conv. 3 1 256 2 16 conv. 3 1 32 -
8 dilated conv. 3 1 256 4 17 conv. 3 1 3 -
9 dilated conv. 3 1 256 8

Table 1: Network architecture of 3DCN (top) and CombCN (bottom). In the bottom table, * represents the layers where combi-
nation takes place in CombCN.

where� is the pixelwise multiplication and ‖·‖ is the l1 nor-
m.

Spatial details inference by CombCN
The output of 3DCN is a low resolution inpainted video.
It conveys temporal structure but lacks details within each
frame. To restore the details, we extend a 2D completion net-
work (2DCN) inspired by a state-of-the-art image inpainting
work (Iizuka, Simo-Serra, and Ishikawa 2017), obtaining a
combined completion network (CombCN). This CombCN
consists of 17 layers including 11 strided convolutional lay-
ers, 2 fractional deconvolutional layers and 4 dilated convo-
lutional layers. It also follows an encoder-decoder structure
where the minimal feature map size is H

4 ×
W
4 . The dilated

convolutional layers are involved to obtain a larger percep-
tion field so that the network can ”see” areas far from the
missing part. The configuration of CombCN is listed in Ta-
ble. 1 (bottom) and we encourage the readers to review (I-
izuka, Simo-Serra, and Ishikawa 2017) for a detailed expla-
nation of its original configuration. Note that we also made
a modification by involving skip-connection as U-Net.

To tackle the issue that 2DCN treats each frame indepen-
dently without considering temporal coherence, we also in-
ject the information from the output of 3DCN to CombCN.
This is achieved by using two convolutional layers to ex-
tract two feature maps of the 3DCN output separately. The
two feature maps are then added to the first and last layer
of the same size in CombCN, serving as a temporal guid-
ance. In this paper, since 3DCN works on videos of size
H
2 ×

W
2 , the combination takes place in the 2nd and the 15th

layer. We compared the effectiveness of this combination
setting with the basic 2DCN on successive frames. The ex-
perimental results illustrate temporal coherence can be well
preserved when inpainting frames separately, as shown in
Figs. 3 and 1.

Training. Let Gi(V
k
in,M

k, Id,kout) = Ikout denotes the
CombCN in a functional form, where V k

in, Mk and Id,kout are
the k-th frame of the incomplete video Vin, mask video M
and the inpainted video V d

out by 3DCN. During training, we

view a video data sample as a batch of images so that the da-
ta format can be well supported by the existing deep learn-
ing frameworks like TensorFlow. For a video data sample,
the optimization goal is to minimize the mean of the l1 nor-
m of the difference between Ikout and V k

c (k = 1, 2, ..., F ).
Specifically, the loss of CombCN is defined as:

LCombCN (Vin,M, V d
out, Vc) (2)

=
∑

k=1,2,...,F

‖Mk � (Gi(V
k
in,M

k, Id,kout)− V k
c )‖

F · ‖Mk‖

In practice, we first pre-train 3DCN to converge, and then
train CombCN with the pre-trained 3DCN model finetuned.
This training strategy can lead to fast convergence of Com-
bCN compared with training both sub-networks together
from scratch. We also enable finetuning 3DCN in order to
acquire lower loss compared with the strategy without fine-
tuning. In this case, we jointly optimize the weighted sum of
the two sub-network losses, i.e.

Ltotal = L3DCN + αLCombCN (3)

where α is a balancing parameter which is set to 1.0 in our
paper. A detailed comparison of different training strategies
are presented in Section Performance of variants of train-
ing strategy. The experiment result shows that our training
strategy outperforms the other two, i.e. pre-training 3DCN
disabled and finetuning 3DCN disabled when training Com-
bCN.

Experimental Results
Dataset and implementation details
To validate our 3D-2D combined completion network, we
tested on three datasets, FaceForensics (Rössler et al. 2018),
300VW (Chrysos et al. 2015) and Caltech (Dollár et al.
2012).

The first two datasets contain 1,004 and 300 video clip-
s with human faces respectively, where the faces are near-
frontal pose and neutral expression change across frames. To
further stress test our method, we also run on Caltech (Dol-
lár et al. 2012) which contains 10 hours of video of size
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Figure 3: Inpainted frames on datasets FaceForensics (a∼d) and Caltech (e, f). In each panel, the two rows represent two frames
of a video, and the five columns from left to right are input, results by 3DCN, 2DCN and CombCN, as well as the target ground
truth. Better visual experience can be obtained in our accompanying supplemental materials.

640× 480 taken from a vehicle driving through regular traf-
fic in an urban environment. Compared with the face videos
with obvious semantic structures, Caltech dataset is more
challenging to an inpainting task.

In data preparation stage, we group every 32 frames from
the original video clips into a data sample. Each frame is in
1282 resolution, which is generated in the following man-
ner. For the face videos, i.e. FaceForensics and 300VW, we
first crop the face out with a squared bounding box; while for
Caltech dataset, we directly crop the central 4802 region out.
The cropped region is then resized into 1282 resolution. For
each dataset, we separate the whole data samples into train-
ing and validation sets and control their proportion 5 : 1.

During training we randomly generate a hole across al-
l frames in the [0.375l, 0.5l] pixel range and fill it with the
mean pixel value of the training dataset, where l is the frame
size (128 in this paper). The range follows the same ratio
as in (Iizuka, Simo-Serra, and Ishikawa 2017). The position
of the hole for a video data sample is identical for all of
its frames. Based on these inputs, we first pre-train 3DCN
to convergence and then train CombCN with the pre-trained
3DCN model jointly finetuned. The CombCN is trained with
100k iterations by an Adam optimizer, whose regression
weight and learning rate are set to 0.01 and 0.001, respec-
tively. Each iteration costs approximate 0.8s and it takes n-
early 30 hours to complete the entire training. The detailed
configuration of 3DCN and CombCN is illustrated in Fig. 2.
The implementation is based on TensorFlow and the net-

work training is performed on a single NVIDIA GeForce
GTX 1080 Ti.

Comparisons with existing methods
Our results in comparison with those produced by 2DCN
and 3DCN can be found in Figs. 3 and 4. More video re-
sults are also presented in our accompanying supplemental
materials.

Ours vs. 2DCN. We first compare our method with a
state-of-the-art image inpainting method (Iizuka, Simo-
Serra, and Ishikawa 2017), which is applied to each video
frame independently. Such an image inpainting method is
expected to produce higher quality result, but when applying
it to each video frame, we found that the quality of frames
are unstable and annoying visual artifacts like flicker are
present. This is because it lacks the mechanism to preserve
the spatial-temporal coherence of the video. For example, in
the 3rd column of Fig. 3(a)(d), the algorithm produces high
quality results on the first frame but fails in the second frame,
making the mouths missing. This circumstance also occurs
in the Caltech dataset as shown in Fig. 3(e), where the car
disappears unreasonably in the second frame. In addition,
if there is motion in video, 2DCN may also produce blurry
or distorted results as illustrated in Fig. 3(b)(c). In contract,
our CombCN produces reasonable and stable results (the 4th
column) across frames. This temporal coherence ensures the
pleasant user experience when the video being played.
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Figure 4: Inpainting results from videos with random holes. We visualize the differences between the two successive frames
to illustrate the inter-frame consistency. It shows that our CombCN produced clearer results than 3DCN, and smoother results
than 2DCN. Better visual experience can be obtained in our accompanying supplemental materials.

3DCN 2DCN CombCN (ours)
FaceForensics 7.18 6.77 6.27

Caltech 11.91 11.16 9.56
V-1 V-2 T-1 T-2 our method

3DCN 9.51 11.56 6.30 9.28 4.45
CombCN 6.39 8.13 5.18 6.31 4.20

Table 2: Final l1 losses. Top: the losses of 3DCN, 2DCN and
CombCN of datasets FaceForensics and Caltech. Bottom:
the losses of 3DCN and CombCN in 300VW dataset, based
on variants of 3DCN (V-1, V-2) and training strategy (T-1,
T-2), in comparison with our method.

Ours vs. 3DCN. We also compare our results with the low
resolution output achieved by 3DCN. They are listed in the
2nd column in Fig. 3. Due to the usage of 3D CNN in ad-
dition to working on low resolution, the inpainted frames
contain significant blurry artifacts so that details cannot be
well reconstructed. For example in Fig. 3(b)(c), the teeth are
almost missing in the inpainted frames by 3DCN. Howev-
er, unlike the results by 2DCN, they have smooth transi-
tion across frames. In comparison, our approach preserves
temporal coherence and details simultaneously. The final l1
losses by 3DCN, 2DCN and CombCN are listed in Table. 2
(top).

Random holes. Our system can also be easily applied to
the inpainting task with random holes in validation/testing
phase, even in the case that holes are distinct for the input
frames. Note that in this case, though working in a lower res-
olution, 3DCN can further reveal its power to fill the holes in
a temporally consistent manner, because it can take advan-
tage of the pixels of the non-hole regions in the contiguous
frames. However, distinct holes make it more challenging
for 2DCN to keep the inter-frame consistency. As a result,
our CombCN combines the two benefits from the two sub-
networks and is able to produce clearer and smoother results.

The value of l1 loss in this paper has been normalized so that it
is equal to the mean error for each pixel. Its value range is [0, 255].

Fig. 4 shows two examples of video inpainting with random
holes.

Ablation studies
To discover the vital elements in the success of our proposed
model for video inpainting, we made two groups of variants
of our method. They are based on modifications of the 3D-
CN structure and the training strategy separately. The final
losses of all variants and our method are listed in Table. 2
(bottom). These ablation studies were conducted on 300VW
dataset.

Performance of variants of 3DCN To investigate the in-
fluence of 3DCN to the final results by CombCN, we first
modified the structure of 3DCN to its two variants V-1, V-2
as below.

V-1. Feed 3DCN with videos in lower resolution.
In this experiment, we fed the 3DCN with a lower resolu-
tion version of the original video, i.e. setting down-sample
rate r = 4 to produce a 323 video Ṽ d

in. Accordingly, we
changed the combination layers in CombCN to the first
and last feature maps of size 322 instead of 642. In this
setting, the 3DCN produces more blurry frames while the
temporal coherence is rarely lost. Our experiment shows
that the convergence errors of 3DCN and CombCN are
9.51 and 6.39, while our baseline model produces the cor-
responding errors 4.45 and 4.20.

V-2. Involve down-sampling in time axis in 3DCN.
We alternatively modified our basic 3DCN to allow strid-
ed convolutions across time-axis. So the frame number of
the feature maps in the 2nd and 4th convolutional layers
are down-sampled, becoming F

2 and F
4 respectively. The

deconvolutional layers are also modified to support up-
sampling in time-axis. In this setting, the temporal coher-
ence of the inpainted frames by 3DCN are less preserved
while the extracted features become more compact. Our
experiment shows that visually this setting does not obvi-
ously down-grade the performance of CombCN, and the



Figure 5: Training and validation loss of variants of training
strategy for 3DCN (top) and CombCN (bottom).

convergence errors increase to 11.56 for 3DCN and 8.13
for CombCN.

Performance of variants of training strategy As afore-
mentioned, our experimental results were produced by a
CombCN trained with a fine-tuned pre-trained model of 3D-
CN. To investigate the performance of this training strategy,
we further compared two other strategies T-1 and T-2 as fol-
lows.
T-1. Pre-train 3DCN, then train CombCN without fine-

tuning it.
We first disable fine-tuning the pre-trained model of the
3DCN when training the CombCN. In this setting, the
pre-trained 3DCN produces inpainted video frames in low
resolution and they are directly fed forward to the Com-
bCN. Due to lack of parameter updating, the loss of 3D-
CN keeps fluctuating without dropping, while the loss of
the CombCN drops to convergence after nearly 20k iter-
ations. After nearly 100k iterations, the loss approaches
the value that is achieved by the strategy of fine-tuning
enabled. We plot the two losses of 3DCN and CombCN
in 100k iterations labelled by ”T-1: 3D Fixed” in Fig. 5.

T-2. Train 3DCN and CombCN jointly from scratch.
We further remove the stage of pre-training 3DCN, and
train 3DCN and CombCN jointly from scratch. Com-
pared with our method and T-1, due to the lack of rich
informative guidance produced by 3DCN, it takes consid-
erable iterations (over 50k) for CombCN and 3DCN to
converge. Furthermore, the convergence losses of the t-
wo sub-networks are also higher, i.e. 9.28 for 3DCN and
6.31 for CombCN. The result reveals the capability of our
current training strategy in this paper.

Limitations
Our approach can handle videos with unstructured informa-
tion and motion in most cases. However, it may still fail if
the test video has a severe variation from the training data.
Furthermore, inferring temporal coherence relies on 3DCN-
N so that large motion cannot be easily captured due to the
limitation of the size of receptive field. Fig. 6 illustrates an
example of our failure case, where the test video displays a

Figure 6: Failure case. Top: five frames with holes as input.
Bottom: inpainted results by CombCN.

man with large motion and was captured in a different view
setting (far from the face). As a result, our approach pro-
duces an unreasonable face in the 4th frame. We believe us-
ing an optical flow and LSTM based solution as in (Lai et
al. 2018; Ren et al. 2016) could be a potential idea for this
problem.

Moreover, unlike state-of-the-art image inpainting ap-
proaches commonly involving GAN to synthesize more
vivid results, we only use l1 loss in our paper, which may
potentially limit the power of our combination idea. We will
leave it as a future work about how to integrate GANs to our
3DCN and CombCN.

Conclusion
We have presented an end-to-end framework for video in-
painting through a joint 2D-3D CNN which contains a tem-
poral structure inference network and spatial detail recover-
ing network. Our method can fill regular or random holes
across frames to produce plausible results. These result-
s show that our method significantly improves the perfor-
mance of existing methods. We also believe this architecture
has potentials to be applied to other video generation tasks.
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