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Introduction 1

Seq2Seq Model

Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM) and Gated Recurrent neural networks (GRU) in particular,
have been firmly established as state of the art approaches in
sequence modeling [4].
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Introduction 2
Seg2Seq Model
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Introduction 3

Seq2Seq Model il
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Architecture

Seg2Seq Model

The seg2seq model was born in the field of language modeling [3].
the idea here, is to transform an input sequence (source) to a hew
one (target) and both sequences can be of arbitrary lengths.
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Architecture

Seg2Seq Model

The seg2seq model was born in the field of language modeling [3].

the idea here, is to transform an input sequence (source) to a hew

one (target) and both sequences can be of arbitrary lengths.

The seg2seq has an encoder-decoder architecture, composed of:
» Encoder : An encoder processes the input sequence and

compresses the information into a context vector (also
known as sentence embedding) of a fixed length.
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Architecture

Seg2Seq Model

The seg2seq model was born in the field of language modeling [3].

the idea here, is to transform an input sequence (source) to a hew

one (target) and both sequences can be of arbitrary lengths.

The seg2seq has an encoder-decoder architecture, composed of:
» Encoder : An encoder processes the input sequence and

compresses the information into a context vector (also
known as sentence embedding) of a fixed length.

» Decoder : A decoder is initialized with the context vector to emit
the transformed output.
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Limitation
Seg2Seq Model
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» This representation obtained by the encoder (fixed length vector)
is expected to be a good summary of the meaning of the
whole source sequence, but this is not always the case.
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Limitation
Seg2Seq Model
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» This representation obtained by the encoder (fixed length vector)
is expected to be a good summary of the meaning of the
whole source sequence, but this is not always the case.

» A critical and apparent disadvantage of this fixed-length

context vector design is incapability of remembering long
sentences.
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Gated recurrent units to attention
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Looking at the simple RNN naive transition function
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Looking at the simple RNN naive transition function
f(hi—1,x;) = tanh (Wx; + Uh;_1 + b)

With this naive transition the error must backpropagate through all the
intermediate nodes:

OrOTOTOTE
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Gated recurrent units to attention
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Looking at the simple RNN naive transition function
f(hi—1,x;) = tanh (Wx; + Uh;_1 + b)

With this naive transition the error must backpropagate through all the
intermediate nodes:

OrOTOTOTE

The Back propagation through time imply :
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Problematic!
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Attention

LSTM & GRU

A key idea behind LSTM and GRU is the additive update.

he = u o he || [ where 7. = o0 n)

This additive update creates linear short-cut connections
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Gated recurrent units to attention
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What are those adaptive shortcuts [1]?
When unrolled, it’s a
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Attention

Gated recurrent units to attention W
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he = i (t_ﬁluj) (ﬁ(l - Uk)) hi

Can we “free” these dependent weights? i1 = 1
Can we “free” candidate vectors?

t
Can we separate keys and values? hu = aihi, where a; o< exp(ATT (ki 2) 1
=1

el

Can we have multiple attention heads?

hy = me(zi), where a; o< exp(ATT(f(z;),z:)) 2
i=1

he = Zfliv(f<1’i))> where o; o exp(ATT(K(f(x:)),Q(2¢))) 3

i=1

t
he = [hys--- 3hf€], where hf = Y afVF(f(2:)), and af oc exp(ATT(K*(f(2:)), Q*(f(2.)))) 4

=1
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Attention (Sense of positions)

Gated recurrent units to attention
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The current formulation of the attention is position-invariant:

ATT(A, B,C) == ATT(B, C, A)
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Attention (Sense of positions)
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The current formulation of the attention is position-invariant:

ATT(A, B,C) == ATT(B, C, A)

The idea is to include some sens of position to the formulation, to
account for position and distances between inputs.
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Attention (Sense of positions)
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The current formulation of the attention is position-invariant:

ATT(A, B,C) == ATT(B, C, A)

The idea is to include some sens of position to the formulation, to
account for position and distances between inputs.

)
hi ="k Ve (7 (x) + (i) )
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o ocexp (ATT (K* (£(x) + ) ), @ (F(x) + pli) ) ))
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Attention (Sense of positions)

Gated recurrent units to attention Sy,
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The current formulation of the attention is position-invariant:

ATT(A, B,C) == ATT(B, C, A)

The idea is to include some sens of position to the formulation, to
account for position and distances between inputs.

)
hi ="k Ve (7 (x) + (i) )
i=1

o ocexp (ATT (K* (£(x) + ) ), @ (F(x) + pli) ) ))

The choice of positional embedding p(i) can be obtained from:
» Learned Positional Embedding [Sukhbataar et al., 2016]
» Sinusoidal Positional Embedding [Vaswani et al., 2017]
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Introduction
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» Transformer [4] is a model architecture relying entirely on an
attention (self-attention) mechanism without using
sequence-aligned recurrent architecture to draw global
dependencies between input and output.
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» Transformer [4] is a model architecture relying entirely on an
attention (self-attention) mechanism without using
sequence-aligned recurrent architecture to draw global
dependencies between input and output.

» The Transformer follows seq2seq architecture but using
stacked self-attention and point-wise, fully connected layers for
both the encoder and decode.
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» Transformer [4] is a model architecture relying entirely on an

attention (self-attention) mechanism without using
sequence-aligned recurrent architecture to draw global
dependencies between input and output.

The Transformer follows seq2seq architecture but using
stacked self-attention and point-wise, fully connected layers for
both the encoder and decode.

The encoder maps an input sequence of symbol

representations (xi,--- , Xp) to a sequence of continuous
representations z = (z;,- - - , z,). Given z, the decoder then
generates an output sequence (y1,- - , ym) of symbols one

element at a time
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The Transformer was first proposed in the paper Attention is All YO
Need
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The Transformer was first proposed in the paper Attention is All YO
Need
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Figure: Image source [5]
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Transformer

Encoder
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The encoder is composed of a stack of N = 6 identical layers.
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The encoder is composed of a stack of N = 6 identical layers.
Each layer has two sub-layers.

» A multi-head self-attention mechanism,
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The encoder is composed of a stack of N = 6 identical layers.
Each layer has two sub-layers.

» A multi-head self-attention mechanism,

» A simple, position-wise fully connected feed-forward
network.
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The encoder is composed of a stack of N = 6 identical layers.
Each layer has two sub-layers.

» A multi-head self-attention mechanism,

» A simple, position-wise fully connected feed-forward
network.

Each of those sub-layers is as well proceed by a residual
connection and followed by a layer norm.
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The encoder is composed of a stack of N = 6 identical layers.
Each layer has two sub-layers.

» A multi-head self-attention mechanism,

» A simple, position-wise fully connected feed-forward
network.

Each of those sub-layers is as well proceed by a residual
connection and followed by a layer norm.

Salomon KABONGO, Twitter : @SalomonKabongo1, Web : https:/skabongo.github.io | The Transformer, From RNN to Attention



Transformer

\J

Decoder

‘ll

Z

/‘h\{

The decoder is composed also of a stack of N = 6 identical layers.
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Transformer

Decoder
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The decoder is composed also of a stack of N = 6 identical layers.
Each layer has instead tree sub-layers.

> A modified multi-head self-attention mechanism, to prevent
positions from attending to subsequent positions.
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The decoder is composed also of a stack of N = 6 identical layers.
Each layer has instead tree sub-layers.
> A modified multi-head self-attention mechanism, to prevent
positions from attending to subsequent positions.

» A simple, position-wise fully connected feed-forward
network.
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The decoder is composed also of a stack of N = 6 identical layers.
Each layer has instead tree sub-layers.

> A modified multi-head self-attention mechanism, to prevent
positions from attending to subsequent positions.

» A simple, position-wise fully connected feed-forward
network.

» A multi-head attention over the output of the encoder stack
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Transformer

Decoder
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The decoder is composed also of a stack of N = 6 identical layers.
Each layer has instead tree sub-layers.

> A modified multi-head self-attention mechanism, to prevent
positions from attending to subsequent positions.

» A simple, position-wise fully connected feed-forward
network.

» A multi-head attention over the output of the encoder stack

Each of those sub-layers is proceed by a residual connection and
followed by a layer norm.
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Conclusion
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There have been works to improve the presented vanilla
Transformer for longer-term attention span, less memory [5] and
computation consumption, ...
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